The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase.

نویسندگان

  • Paul W Denny
  • Hosam Shams-Eldin
  • Helen P Price
  • Deborah F Smith
  • Ralph T Schwarz
چکیده

Sphingolipids are ubiquitous and essential components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is conserved up to the formation of sphinganine. However, a divergence is apparent in the synthesis of complex sphingolipids. In animal cells, ceramide is a substrate for sphingomyelin (SM) production via the enzyme SM synthase. In contrast, fungi utilize phytoceramide in the synthesis of inositol phosphorylceramide (IPC) catalyzed by IPC synthase. Because of the absence of a mammalian equivalent, this essential enzyme represents an attractive target for anti-fungal compounds. In common with the fungi, the kinetoplastid protozoa (and higher plants) synthesize IPC rather than SM. However, orthologues of the gene believed to encode the fungal IPC synthase (AUR1) are not readily identified in the complete genome data bases of these species. By utilizing bioinformatic and functional genetic approaches, we have isolated a functional orthologue of AUR1 in the kinetoplastids, causative agents of a range of important human diseases. Expression of this gene in a mammalian cell line led to the synthesis of an IPC-like species, strongly indicating that IPC synthase activity is reconstituted. Furthermore, the gene product can be specifically inhibited by an anti-fungal-targeting IPC synthase. We propose that the kinetoplastid AUR1 functional orthologue encodes an enzyme that defines a new class of protozoan sphingolipid synthase. The identification and characterization of the protozoan IPC synthase, an enzyme with no mammalian equivalent, will raise the possibility of developing anti-protozoal drugs with minimal toxic side affects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The antifungal Aureobasidin A and an analogue are active against the protozoan parasite Toxoplasma gondii but do not inhibit sphingolipid biosynthesis - Corrigendum.

Toxoplasma gondii is an obligate intracellular protozoan parasite of the phylum Apicomplexa, and toxoplasmosis is an important disease of both humans and economically important animals. With a limited array of drugs available there is a need to identify new therapeutic compounds. Aureobasidin A (AbA) is an antifungal that targets the essential inositol phosphorylceramide (IPC, sphingolipid) syn...

متن کامل

Cell-free synthesis and functional characterization of sphingolipid synthases from parasitic trypanosomatid protozoa.

The Trypanosoma brucei genome has four highly similar genes encoding sphingolipid synthases (TbSLS1-4). TbSLSs are polytopic membrane proteins that are essential for viability of the pathogenic bloodstream stage of this human protozoan parasite and, consequently, can be considered as potential drug targets. TbSLS4 was shown previously to be a bifunctional sphingomyelin/ethanolamine phosphorylce...

متن کامل

Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene.

We have identified a Saccharomyces cerevisiae gene necessary for the step in sphingolipid synthesis in which inositol phosphate is added to ceramide to form inositol-P-ceramide, a reaction catalyzed by phosphatidylinositol:ceramide phosphoinositol transferase (IPC synthase). This step should be an effective target for antifungal drugs. A key element in our experiments was the development of a p...

متن کامل

Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design [version 2; referees: 2 approved]

Inositol phosphorylceramide synthase (IPCS) has emerged as an important, interesting and attractive target in the sphingolipid metabolism of Leishmania. IPCS catalyzes the conversion of ceramide to IPC which forms the most predominant sphingolipid in . IPCS has no mammalian equivalent Leishmania and also plays an important role in maintaining the infectivity and viability of the parasite. The p...

متن کامل

Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design

Inositol phosphorylceramide synthase (IPCS) has emerged as an important, interesting and attractive target in the sphingolipid metabolism of Leishmania. IPCS catalyzes the conversion of ceramide to IPC which forms the most predominant sphingolipid in Leishmania. IPCS has no mammalian equivalent and also plays an important role in maintaining the infectivity and viability of the parasite. The pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 38  شماره 

صفحات  -

تاریخ انتشار 2006